Open-Source Software for Processing and Using Dark Energy Spectroscopic Instrument Data

Anthony Kremin, Lawrence Berkeley National Lab

ADASS 2023, Monday Plenary 3 Tucson, AZ

DESI Survey: Making the Largest 3D Map of the Universe

3 million Quasars (0.9 < z < 2.1)+ Ly-a forest (2.1 < z)

16 million Emission Line Galaxies (0.6 < z < 1.6)

8 million Luminous Red Galaxies (0.4 < z < 1)

13.5 million Bright Galaxies (0.0 < z < 0.4)

From 2021-2026 DESI will measure precise redshifts to ~40 million galaxies over 14,000 deg2 .

Science drivers: Baryon Acoustic Oscillations and Redshift Space Distortions

Key DESI Components

4m Mayall Telescope, KPNO Wide Field Corrector 8 sq. deg. Field of View

Focal Plane with 5,000 Fiber Positioners

10 Multi-Object Spectrographs

DESI Focal Plane and Fiber Positioning

- 5,020 phi-theta fiber positioners
- 12 mm patrol region
- Overlapping ranges
- No positioner feedback
- Pre-planned moves avoid collisions
- Move time 8-12 s

DESI Spectrographs

10 Multi-Object Spectrographs:

- 3 channels (blue, red, NIR)
- 500 fibers
- Wavelength Range: 360 980 nm
- Resolution: 2000 (blue) 5500 (NIR)

Stable PSF

• Better than 1 % over many days

Low Read out noise

•~3 e-

Total Throughput of optical chain • ~40% at 700 nm (total)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

Excellent Data

U.S. Department of Energy Office of Science

Nov 6th, 2023

Optimized for Large Numbers

1 0 P I 💾 I 🗏 🔇 specviewer - data - pipeline fit — noise A Flux [10--5 5000 10000 4000 6000 7000 8000 9000 + Imaging catalogs + Spectroscopy DESI DESI Footprint 000 000 DESI Fibers DESI Denali tiles GALAXY, z = 1.462 DESI Denali spectra RA,Dec: 190.2035, 61.6439 Targetid: 39633407830918930 8 DESI daily tiles S DESI daily spectra 0 DESI Dark-time Targets (DR9/Main) DESI Bright-time Targets (DR9/Main) 0 DESI Dark-time Secondary Targets (DR9/Main) DESI Bright-time Secondary Targets (DR9/Main) 000 DESI Dark-time Targets (DR9/SV3) DESI Bright-time Targets (DR9/SV3) DESI Dark-time Secondary Targets (DR9/SV3) DESI Bright-time Secondary Targets (DR9/SV3) DESI Dark-time Targets (DR9/SV1) 0000 DESI Bright-time Targets (DR9/SV1) DESI Dark-time Secondary Targets (DR9/SV1) DESI Bright-time Secondary Targets (DR9/SV1) Contrast: DESI Targets (DR8) Bright Objects Brightness: 000 00 00.0

Nov 6th, 2023

7

Optimized for Large Numbers

Nov 6th, 2023

How do we process the data?

U.S. Department of Energy Office of Science

- Have both "daily" and re-processing workflows.
- Both use the same underlying reduction pipeline and monitoring tools.
- "daily" reacts to new data in real time.
- Re-processing workflow knows about data before, which allows for more optimization.

Daily Workflow: Overview

Daily processing uses National Energy Research Scientific Computing Center's Perlmutter to facilitate our workflow:

- 5 nodes (320 CPU cores+20 GPUs or 640 CPU cores) available at any given time in "realtime" queue.
- Additional workflow queue available to run long-running processes.
- SPIN service allows container-based applications to host relevant collaboration files on a password protected web server.

Available as part of *desispec* package: <u>https://github.com/desihub/desispec</u>

Workflow: Data Transfer

- Daemon runs at NERSC and requests data via rsync connections
- Cadence of every 1 minute

Workflow: Workflow Manager

- Reads metadata of the images on disk
- Submits computing jobs specific to type of data
- One job per exposure
 - MPI ranks within a job are used to process the 30 cameras.
 - Previously multi-node but now single node thanks to improved efficiency
- Coordinates the dependencies between the jobs

Job Graph for Nov 2. 2023

Spectroscopic Pipeline in *desispec*

U.S. Department of Energy Office of Science

OPEN ACCESS

THE ASTRONOMICAL JOURNAL, 165:144 (43pp), 2023 April © 2023. The Author(s). Published by the American Astronomical Society. https://doi.org/10.3847/1538-3881/acb212

The Spectroscopic Data Processing Pipeline for the Dark Energy Spectroscopic Instrument

J. Guy¹, S. Bailey¹, A. Kremin¹, Shadab Alam², D. M. Alexander³, C. Allende Prieto⁴, S. BenZvi⁵, A. S. Bolton⁶, D. Brooks⁷, E. Chaussidon⁸, A. P. Cooper⁹, K. Dawson¹⁰, A. de la Macorra¹¹, A. Dey⁶, Biprateep Dey¹², G. Dhungana¹³, D. J. Eisenstein¹⁴, A. Font-Ribera¹⁵, J. E. Forero-Romero¹⁶, E. Gaztañaga^{17,18}, S. Gontcho A Gontcho¹, D. Green¹⁹, K. Honscheid^{20,21,22}, M. Ishak²³, R. Kehoe¹³, D. Kirkby¹⁹, T. Kisner¹, Sergey E. Koposov², Ting-Wen Lan²⁴, M. Landriau¹, L. Le Guillou²⁵, Michael E. Levi¹, C. Magneville⁸, Christopher J. Manser²⁶, P. Martini^{20,22,27}, Aaron M. Meisner⁶, R. Miquel^{15,28}, J. Moustakas²⁹, Adam D. Myers³⁰, Jeffrey A. Newman¹², Jundan Nie³¹, N. Palanque-Delabrouille^{1,8}, W. J. Percival^{32,33,34}, C. Poppett^{1,35,36}, F. Prada³⁷, A. Raichoor¹, C. Ravoux⁸, A. J. Ross^{20,22,27}, E. F. Schlafly³⁸, D. Schlegel¹⁰, M. Schubnell^{39,40}, Ray M. Sharples^{41,42}, Gregory Tarlé⁴⁰, B. A. Weaver⁶, Christopher Yéche⁸, Rongpu Zhou¹⁰, Zhimin Zhou³¹, and H. Zou³¹

https://github.com/desihub/desispec

https://arxiv.org/abs/2209.14482

Spectroscopic Pipeline in *desispec*

- MPI- and GPU- enabled python code using *mpi4py* and *cupy*.
- Corrects for bias and dark current, removes cosmic rays, etc.
- Extracts all 2-D spectra from the preprocessed images into uncorrelated 1-D spectra and uncorrelated inverse variances.
- Corrects the fluxes for spatial and wavelength variations using flats.
- Removes the background sky light from each target using joint fitting of sky fibers.
- Use standard star observations fit to stellar models to calibrate flux vectors.
- Fit calibrated spectra to PCA galaxy, quasar, and stellar templates for classification and redshift.

16

SPECTROSCOPIC Pipeline Improvement I: Extractions **BERKELEY LAB** U.S. Department of Energy Office of Science

DESI Extraction on Perlmutter GPUs

DARK ENERGY

INSTRUMENT

CoriGPU/V100 📕 DGX/A100 📒 Perlmutter/A100 30.00 25x 20x Speedup (Relative to Edison Baseline) Speed Up 10.00 0x GPUMPN TISTOPU Port Service Elgen olesta 21051 Implementation milestone

- DESI uses "spectroperfectionism" (Bolton and Schlegel 2010, arxiv 0911.2689
- Spectral extraction involves using a 2D PSF model to fit the resolution of the instrument, flux, and variance.
- Linear algebra problem
 - Computationally intensive
 - Ideal for porting to GPUs
- Saw **25***x* speedup in calculation porting to GPUs using *cupy*

figure credit: Daniel Margala

DARK ENERGY SPECTROSCOPIC

INSTRUMENT

U.S. Department of Energy Office of Science

ADASS 2023

Pipeline Improvement II: Redshift Fitting

- Redshifts determined from scanning over redshifts and over PCA templates.
- Computationally intensive linear algebra problem.
 - Ideal for porting to GPUs.
- Saw more than 2x improvement
 - Later optimizations using CUDA kernels in another step improved another $\sim 4x$.
- See good strong scaling

Examples of Performance:

Night of Nov 2nd, 2023

- No human involvement
- Generally finishes processing a set of observations before the next arrives
- Have all data products, including redshifts, by roughly sunrise each morning.

DESI Early Data Release

• Survey Validation Data taken from Dec. 2020 to May 2021

- Paper: <u>https://arxiv.org/abs/2306.06308</u>
- Documentation:

https://data.desi.lbl.gov/doc/releases/edr/

- Includes:
 - Raw data
 - 1D, wavelength calibrated, and flux calibrated spectra
 - Coadded spectra for individual objects
 - Multiple Redshifts for each object
 - Per exposure, per pointing ("tile"), per object ("healpix")
 - Summary catalogs of redshifts for each exposure grouping
 - Value added catalogs

Future Data Release: DR1

Data Available To Collaboration

- Goals of DESI are ambitious, and with them have come an ambitious observing strategy that requires up-to-date knowledge of the data from previous nights.
- The data volume will be ~10x more than previous state-of-the-art large scale structure spectroscopic surveys.
- Improved processing efficiency has been able to offset the increase in volume of the new data for the first ~3 years of DESI.
- Reaching saturation of easy GPU optimizations, but that is indicative of an efficient and powerful pipeline.
- There are DESI-specific aspects of the pipeline, but contributions are welcome to improving the universality.

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!

Thank You!

